Teacher Idea Exchange

The editors of TEACHING invite you, the classroom teacher, to utilize the Teacher Idea Exchange to share your ideas about instructional materials and techniques you have designed, modified, or adapted for use with exceptional children. Send us a brief description of your idea (about 500 to 600 words). Include any drawings or photographs which will help clarify your presentation. Remember, if it helped you to improve your teaching, it will help others do the same. Guidelines are available on request.

The Teacher Idea Exchange (TIX) was designed to facilitate your cutting out and filing the material presented in a 5" x 8" file box. Each idea published will be given a TIX number and will be identified by title, author, and those descriptors which best characterize its contents in terms of the following: general curriculum area, specific curriculum area, skills or cognitive processes developed, type of material (e.g., book, film, record), ability level needed to use the material, special characteristics (e.g., braille, color-keyed, programmed material, etc.).

Thus, you can organize your files using those descriptors which best meet your particular needs and cross index under the remaining descriptors.

In September of 1970 a new group of third graders entered my class in Palo Alto, California. As always, I wanted to help the school meet the needs of all students by setting up good class standards at the beginning of the year. But this year was different for I had a new tool, precision teaching, which proved to be invaluable.

One of the areas we worked on was inappropriate talkouts. Spontaneous comments were encouraged during storytime, art, and small group discussions, but talkouts were inappropriate during instruction and work time. The first school day I said nothing to the class about talkouts and counted 26. The second morning I showed the class my wrist counter and discussed the nature and problem of inappropriate talkouts. I told the class that I would not say anything to anyone for a talkout; I would simply count (or nonrespond). The children thought this was great!

The number of talkouts decreased remarkably. In two weeks the count was down to three (our goal), and the class happily applauded their own progress. On the last Friday there were no talkouts, and a cheer arose (not counted).

In our Friday afternoon discussion we agreed that there was no longer a need to count, for our talkouts were under control. So this project was concluded. As a matter of fact, I never needed to count talkouts again for they were never a problem.

In less than three weeks the students had developed an awareness and control of talkouts. Students sometimes came up to look at the counter on the wrist counter, discussed it and, were eager to know each day's count. For both teacher and student this was a happy, painless, nonverbal way of establishing a good habit.

Our talkout project even extended beyond the classroom. Jim, a very bright and verbal boy, came to me one recess to explain his talkouts, which were many. He was the youngest of five children and had

TIX 40: Decreasing Talkouts

Marjorie Meeks Perine was teaching third grade in Palo Alto, California when this project was conducted. She is now residing in Bethesda, Maryland.

...
TIX 41: Counting Ideas

Michael G. McDonald is a 12 year old student at Saddlebrook Elementary School, Silver Spring, Maryland.

Descriptors: Precision Teaching, Language Arts, Vocabulary Development.

One day my mother and I were sitting in our kitchen. She was timing herself to see how many words she could write per minute on a certain topic. I was watching the clock for her. One of the topics, for example, was Alaska, and she wrote the words: cold, polar bears, Eskimos, spring thaw.

My mother said suddenly, "By writing each word, my frequency is determined somewhat by how fast I can write and not how fast I can think of appropriate words." She mumbled something about a "locked rate." "Why don't I simply use a check mark for every idea I have. You'll just have to trust me, Michael."

Well, after a while I decided I didn't trust her, because the frequency of her ideas (using the slash marks) went from 25 to 36 per minute. Suddenly it hit me—Boom! A fly that had fallen from the kitchen light? No! I shouted, "Why don't you use a tape recorder?"

The frequency of her ideas per minute would increase even more, if she didn't take time to make slash marks but simply said the words into the tape recorder as fast as she thought of them. (And besides, now us kids could check up on her.)

While pulling her glasses down her nose, she said, "My son, the genius! I'll try it, I will."

(TIX 40 Cont'd.)

to interrupt at the dinner table in order to be heard at all. He was growing more and more unhappy with the dinner situation where everyone talked at once, and he wondered if counting could help in any way.

I suggested he discuss it with his mother, and with her approval and support he started a home project. For three evenings he counted interruptions. On the fourth evening he presented his data. His mother explained to me later that everyone was surprised, for they had been quite unaware of their interruptions. After the initial count Jim unfortunately didn't count anymore, but his family worked hard at taking turns in discussions at dinner. This project was conceived of and managed by an eight year old. This is the exciting way one teaching project can suggest another.
TIX 42: Let Your Students Chart Your Behavior

Judy Hirsch was a teacher of children with behavioral disorders in the New York City Public School System. She currently teaches in Beer-Sheba, Israel.

Descriptors: Precision Teaching, Charting, Behavior Management.

I taught a class of children with behavioral disorders in the New York City Public Schools. I taught my students to count and chart their behaviors, and they cared enough to count and chart my behaviors. Frankie, age 10½, was upset whenever I

TIX 43: Charting Group and Individual Instruction

Ann Starlin is a first grade teacher at the Laboratory School, Bemidji, Minnesota.

Descriptors: Precision Teaching, Language Arts, Phonics, Evaluating Student Performance, Evaluating Student-Teacher Performance.

In our work together, my husband, Clay, and I believe that whether we are teachers, student teachers, or teacher aides, the way to tell if we have been effective in our teaching is by the students’ performance. We, as teachers, sometimes keep

(TIX 42 Cont’d. on Reverse Side)

(TIX 43 Cont’d. on Reverse Side)
raised my voice (which he considered yells). He counted and charted my “yells” every day. Each time he counted he told me “you’re yelling.” As you can see from Frankie’s chart, I stopped.

If you care enough to change, let your students count and chart some of your behaviors. You’ll find out a lot about the things you do while you’re teaching, and maybe you’ll change too.

such charts as smile charts, touch charts, and positive or negative comment charts. This information is important to us only if it helps us improve our students’ performance. So it is the student’s chart that really tells the tale, as indicated by Patti’s chart.

This chart shows very readily the successful individual instruction that was given by Karen Fukumoto, my student teacher. When Patti received group instruction in saying consonant and short vowel sounds, her performance was moving in an undesired direction; she was saying fewer sounds correctly and making more errors. Then Karen worked with Patti individually, and a dramatic change occurred. Patti showed much progress in saying her letter sounds correctly and reduced her errors to one per minute.

The Daily Behavior Chart not only indicated that the individual instruction was an effective way to improve Patti’s performance, but it also provided a ready made report of Karen’s success and effectiveness as a student teacher.
direction; she was saying fewer sounds exactly and making more errors. Then
worked with Patti individually, and
amaic change occurred. Patti showed
progress in saying her letter sounds
ly and reduced her errors to one
minute.
The Daily Behavior Chart not only in-
ted that the individual instruction was
effective way to improve Patti’s perfor-
ce, but it also provided a ready made
rt of Karen’s success and effectiveness
student teacher.

Discussion

interested in the project, David was especially interested in the measurement tools
used. Therefore, on May 24, Ann, the teacher, gave David (1 of the 4 tutors) 20
minutes of instruction and practice in using the wrist counter and stop watch to
count the performance of his teacher and a peer not in his tutoring group. On the
following Monday, David was given 10 more minutes of instruction in how to
chart the data on Standard Behavior Charts. He was already familiar with the
charts because his teacher had been using them in class for 6 weeks.

Of the 32 data points which David charted, 29 were charted perfectly. The
charts of 2 of his 4 pupils are shown in Figures 4 and 5. David recorded and
charted only those frequencies which appeared during and after peer instruction
and praise. The first part of the peer tutoring and praise period (center phases on
Figures 4 and 5) has no frequencies recorded because it was during this time that
David was still getting daily instruction and practice in charting.

Instructing the gifted. There are many children who excel in most academic
purports, in a specific school subject, or only in certain discrete behaviors. How-
ever, regardless of the breadth of their excellence, they are often instructionally
neglected. Those of us who fail to actively help advanced students improve their
skills are just as remiss in our responsibilities as those of us who neglect to teach
the slower child. The precise data and charts which represent the accomplis-
ments of the students in this project prove that the amount of investment is worth
the returns.

The efficacy and need for increasing the academic performance of advanced
students is illustrated in Dru’s increased frequency of naming geometric figures
(Figure 1).

Using peer tutors. The use of peers in the instructional process has been a ne-
eglected area in our educational system. Patterson has done work which shows that
peers can condition a simple motor response by rewarding each other’s appropr
"Peer tutoring is a time and energy saving device for the teacher and is very rewarding for the students."

Patterson has also shown that the classroom environment can be programmed so that peers do not increase a deviant youngster's inappropriate behavior but do increase appropriate classroom behavior—e.g., attending to the task (1968). However, few sources cite the use of peers as teachers of academic skills. Koenig (1967) mentions the use of peer telecoaching (using a one-way radio) as a means of improving a student's arithmetic. In fact, Koenig's data suggest that peer telecoaching may serve to improve performance more than adult telecoaching. Brodsky, et al. (1968) present some preliminary findings which suggest the effectiveness of using higher ability retarded youngsters as teachers for lower ability retarded children in self-help skills and elementary academic skills (e.g., picture discrimination, sight vocabulary).

The data presented in this article show the feasibility of using peers to instruct each other. The teacher's time investment in actually teaching geometric figures to Dru was an hour and a half over a 17 day period. Nineteen students learned the figures in 18 days from the date the teaching began with Dru's group of peer tutors. Peer tutoring is a time and energy saving device for the teacher and is very rewarding for the students.

Children enjoy being tutors. At the end of the school year, the teacher asked the first graders to name things they enjoyed that year. At the top of their list was learning geometric figures. This high position may be partially due to the fact that they engaged in this activity the last month and a half of the school year and thus it was easily recalled. However, the enthusiasm of the class, its total involvement in the success of the project, and the earned ice cream party speak for this being one of the most enjoyable learning experiences of their first grade year.

Teaching geometric figures to first graders. One conclusion to be drawn from the results of this project is that it is feasible to teach geometric figures (or at least the seven used) in the first grade, although this is not generally a part of
Behavior in other children (1967). Parental intervention can be programed so that inappropriate behavior but do increase, attending to the task (1968). This adds as teachers of academic skills. Telecoaching (using a one way radio) as well. In fact, Koenig's data suggest that performance more than adult telecoaches - preliminary findings which suggest the possibility of using youngsters as teachers for lower and elementary academic skills (e.g., reading, writing, etc).

The feasibility of using peers to intervene in actually teaching geometric concepts in 17 day period. Nineteen students were first. Teaching began with Dru's group energy saving device for the teacher of the school year, the teacher asked the students that year. At the top of their list was the possibility that this may be partially due to the fact that the first and a half of the school year and the enthusiasm of the class, its total involvement in the two forms of this year project and the ice cream party seem to be this alternatives of their first grade year.

One conclusion to be drawn from the ability to teach geometric figures (or at least in this case) is not generally a part of first grade study. More important, the results of this project suggest that we explore the feasibility of introducing first graders to some of the curricular areas traditionally presented at higher levels and use the students' Standard Behavior Charts to determine whether or not they can learn the material in question.

Teaching children to chart. Among the most significant results of this project was that it was possible to chart the performance frequencies of his four students. Teaching each child to chart not only makes it easier for the teacher to utilize peer tutoring, but also permits students to exercise more responsibility and control over their own learning.

David had a birthday 4 days after school closed. One present he hoped to receive was a stop watch. He also asked the teacher if he could have some chart paper to use during the summer. This exemplifies David's enjoyment of collecting data and emphasizes that it is possible to have "happy, well-adjusted" pupils and still maintain a great deal of precision.

For those interested in instituting a group peer tutoring project, the steps are these:
1. Identify (pinpoint) the academic behavior to be taught.
2. Record each child's performance of this behavior for a minimum of 5 days.
3. Announce individual as well as instructional group contingencies (e.g., points for individual and group mastery which total up to full class rewards).
4. Identify the student with the highest middle performance frequency as the first peer tutor.
5. Identify the three to six students with the next highest middle performance frequencies as the second tutors (the number of second tutors depends on the size of the class and how large you wish each peer tutor's instructional group to be).
6. Provide the first peer tutor with 5 minutes of teacher instruction per day until the student has reached your designated performance aim.
7. Begin instructing the first peer tutor in recording and charting pupil performance in the same time or shortly after you begin the instruction described in steps 5 and 6. An alternative to this is to teach the whole class to record and chart their own performance frequencies. This not only facilitates the use of peer tutoring but makes it possible for the children to manage their own projects.
8. The first tutor then instructs, records, and charts the group of second peer tutors using similar procedures. If the whole class has not been taught to record and chart, teacher instruction of the group of second peer tutors in recording and charting pupil performance frequencies should begin at the same time that the first peer tutor begins instruction.
9. The second tutors in turn instruct, record, and chart their groups’ performance frequencies.

10. Be sure to spot check the accuracy of peer instruction, recording, and charting.

11. Make sure that an agreed upon reward is presented immediately after it is earned.

12. After discontinuing peer instruction, have the tutors continue recording and charting daily for at least 5 days to determine if their students are maintaining their performance frequencies.

□ It is evident from the charts presented that it is possible to have an exact record (day by day, week by week, and month by month) of the functioning of a student on a particular task. The assistance that these charts provide in determining a teacher’s (or a peer’s) teaching efficiency and effectiveness is invaluable. Although these data provide highly sensitive and frequent measures of in-class performance, their simplicity is underscored by the fact that a first grade student was accurate and successful in using the tools and procedures of precision teaching.

References

Brodsky, G., LePage, T., & Quiring, J. Experimental peer teaching program. Unpublished research proposal manuscript, Board of Control Project #103, Fairview Hospital and Training Center, Salem, Oregon, 1968.

Patterson, G. R. Personal communication, 1968.

Particular thanks are due to Ann H. Starlin, spouse, colleague, and teacher extraordinary who guided this project which took place in her first grade classroom. To the young boys and girls of Room 4 of Willagillespie Elementary School, Eugene, Oregon, go my devotion and gratitude.

A University of Oregon practicum course taught by Dr. Eric Haughton was responsible for the initiation of this project. His guidance and inspiration as well as his continued assistance are genuinely appreciated.

Conclusions